Abstract

Wireless sensor networks (WSNs) have recently been viewed as the basic architecture that prepared the way for the Internet of Things (IoT) to arise. Nevertheless, when WSNs are linked with the IoT, a difficult issue arises due to excessive energy utilization in their nodes and short network longevity. As a result, energy constraints in sensor nodes, sensor data sharing and routing protocols are the fundamental topics in WSN. This research presents an enhanced smart-energy-efficient routing protocol (ESEERP) technique that extends the lifetime of the network and improves its connection to meet the aforementioned deficiencies. It selects the Cluster Head (CH) depending on an efficient optimization method derived from several purposes. It aids in the reduction of sleepy sensor nodes and decreases energy utilization. A Sail Fish Optimizer (SFO) is used to find an appropriate route to the sink node for data transfer following CH selection. Regarding energy utilization, bandwidth, packet delivery ratio and network longevity, the proposed methodology is mathematically studied, and the results have been compared to identical current approaches such as a Genetic algorithm (GA), Ant Lion optimization (ALO) and Particle Swarm Optimization (PSO). The simulation shows that in the proposed approach for the longevity of the network, there are 3500 rounds; energy utilization achieves a maximum of 0.5 Joules; bandwidth transmits the data at the rate of 0.52 MBPS; the packet delivery ratio (PDR) is at the rate of 96% for 500 nodes, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.