Abstract

To effectively protect the interface circuit between separated power domains from electrostatic discharge (ESD) damage, a new diode-triggered quad-silicon-controlled rectifier (DTQSCR) is proposed and realized in a 0.18- $ {\mu }\text{m}$ 1.8-V/3.3-V CMOS process. Since the DTQSCR embeds four silicon-controlled rectifier paths and a structure of back-to-back diodes, the silicon area can be efficiently reduced more than 30% as compared to the traditional ESD protection design under the same ESD specification. From the measurement results in silicon chip, an interface circuit (level shifter) with the proposed ESD protection design can successfully sustain a human-body-model of greater than 5.5 kV. The proposed ESD protection device is suitable to protect the interface circuits between different power domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.