Abstract
The spatial configuration of initial partons in high multiplicity proton–proton scatterings at 14 TeV is assumed as three randomly positioned “hot spots”. The parton momentum distribution in the hot spots is calculated by HIJING2.0 with some modifications. This initial condition causes not only large eccentricity ϵ2 but also triangularity ϵ3 and the correlation of ϵ2−ϵ3 event-plane angles. The final elliptic flow v2, triangular flow v3, and the correlation of v2−v3 event-plane angles are calculated by using the parton cascade model BAMPS to simulate the space–time parton evolution. Our results show that the v2−v3 correlation is different from that of ϵ2−ϵ3. This finding indicates that translations of different Fourier components of the initial spatial asymmetry to the final flow components are not independent. A dynamical correlation between the elliptic and triangular flow appears during the collective expansion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.