Abstract

ESCRT (endosomal sorting complex required for transport) machinery has been initially identified for its role during endocytosis, which allows membrane proteins and lipids to be degraded in the lysosome. ESCRT function is required to form intraluminal vesicles permitting internalization of cytosolic components or membrane embedded cargoes and promoting endosome maturation. ESCRT machinery also contributes to multiple key cell mechanisms in which it reshapes membranes. In addition, ESCRT actively participates in different types of autophagy processes for degrading cytosolic components, such as endosomal microautophagy and macroautophagy. During macroautophagy, ESCRT promotes formation of multivesicular bodies, which can fuse with autophagosomes to generate amphisomes. This latter fusion probably brings to autophagosomes key membrane molecules necessary for the subsequent fusion with lysosomes. Interestingly, during macroautophagy, ESCRT proteins could be involved in non-canonical functions such as vesicle tethering or phagophore membrane sealing. Additionally, ESCRT subunits could directly interact with key autophagy related proteins to build a closer connection between endocytosis and autophagy pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call