Abstract

We describe a strategy to improve the efficiency of free energy estimates by reducing dissipation in nonequilibrium Monte Carlo simulations. This strategy generalizes the targeted free energy perturbation approach [C. Jarzynski, Phys. Rev. E 65, 046122 (2002)] to nonequilibrium switching simulations, and involves generating artificial, "escorted" trajectories by coupling the evolution of the system to updates in external work parameter. Our central results are: (1) a generalized fluctuation theorem for the escorted trajectories, and (2) estimators for the free energy difference ΔF in terms of these trajectories. We illustrate the method and its effectiveness on model systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.