Abstract
In a previous study we showed that an Escherichia coli O157:H7 strain that was unable to form biofilm was retained in large numbers in dual-strain biofilms formed with an E. coli O-:H4 companion strain. In this study we tested additional companion strains for their ability to retain E. coli O157:H7 strain 0475s. Companion strains producing biofilm that withstood aggressive washes were able to significantly increase serotype O157:H7 retention. Dual-strain biofilms with certain companion strains retained higher percentages of strain 0475s, and that ability was independent of biofilm total cell numbers. Tests with additional non-biofilm-forming E. coli O157:H7 strains showed that enhancement by companion strains was not unique to strain 0475s. Experiments using an E. coli companion strain with deletions of various curli and cellulose genes indicated that dual-strain biofilm formation was dependent on companion strain properties. Strain 0475s was not able to generate biofilm or persist on plastic when grown in broth with a biofilm-forming companion and separated by a 0.2 microm porous membrane, indicating a requirement for intimate contact with the companion strain. When dual-strain biofilms and planktonic cells were challenged with 5% H(2)O(2), strain 0475 showed greater survival in biofilms with certain companion strains compared to the corresponding planktonic cells. The results of this study indicate that non-biofilm-forming E. coli O157:H7 strains are retained on solid surfaces associated with biofilms generated by companion strains. However, properties other than biofilm mass enable certain companion strains to retain greater numbers of E. coli O157:H7.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.