Abstract

The products of the chromosomally encoded umuDC genes are directly required for mutagenesis in Escherichia coli. Strains with either umuD or umuC mutations are rendered phenotypically non-mutable. To ascertain the molecular basis of this non-mutability, we determined the DNA sequence alterations of seven chromosomal umuDC mutants. Six mutants (umuD1, umuD44, umuD77, umuC36, umuC25, and umuC104) were found to be single base-pair substitutions that resulted in missense mutations. The Tn5 transposon insertion mutation (umuC122) resulted in a missense mutation followed immediately by a termination codon, producing a truncated UmuC protein lacking 102 carboxyl-terminal amino acids. All of the mutations were found to reside in regions of the UmuD and UmuC proteins that share high homology with analogous proteins. Chemiluminescent immunoassays revealed that the umuD1, umuD44, and umuD77 mutations all resulted in a non-cleavable UmuD protein. Because UmuD cleavage is a prerequisite for mutagenesis, the lack of UmuD processing appears to be the molecular basis for the non-mutable phenotype in these strains. These studies re-emphasize the critical nature of the RecA-mediated cleavage of UmuD for inducible mutagenesis and provide insights into the functional domains of the UmuC protein.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.