Abstract

Observations of thioredoxin inhibition by cadmium and of a positive role for thioredoxin in protection from Cd(2+) led us to investigate the thioredoxin-cadmium interaction properties. We used calorimetric and spectroscopic methods at different pH values to explore the relative contribution of putative binding residues (Cys32, Cys35, Trp28, Trp31 and Asp26) within or near the active site. At pH 8 or 7.5 two binding sites were identified by isothermal titration calorimetry with affinity constants of 10 x 10(6) m(-1) and 1 x 10(6) m(-1). For both sites, a proton was released upon Cd(2+) binding. One mole of Cd(2+) per mole of reduced thioredoxin was measured by mass spectrometry at these pH values, demonstrating that the two binding sites were partially occupied and mutually exclusive. Cd(2+) binding at either site totally inhibited the thiol-disulfide transferase activity of Trx. The absence of Cd(2+) interaction detected for oxidized or alkylated Trx and the inhibition of the enzymatic activity of thioredoxin by Cd(2+) supported the role of Cys32 at the first site. The fluorescence profile of Cd(2+)-bound thioredoxin differed, however, from that of oxidized thioredoxin, indicating that Cd(2+) was not coordinated with Cys32 and Cys35. From FTIR spectroscopy, we inferred that the second site might involve Asp26, a buried residue that deprotonates at a rather high and unusual pK(a) for a carboxylate (7.5/9.2). The pK(a) of the two residues Cys32 and Asp26 have been shown to be interdependent [Chivers, T. P. (1997) Biochemistry36, 14985-14991]. A mechanism is proposed in which Cd(2+) binding at the solvent-accessible thiolate group of Cys32 induces a decrease of the pK(a) of Asp26 and its deprotonation. Conversely, interaction between the carboxylate group of Asp26 and Cd(2+) at a second binding site induces Cys32 deprotonation and thioredoxin inhibition, so that Cd(2+) inhibits thioredoxin activity not only by binding at the Cys32 but also by interacting with Asp26.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call