Abstract

Shiga toxin (Stx) is the key virulence factor in Shiga toxin producing Escherichia coli (STEC), which can cause diarrhea and hemorrhagic colitis with life-threatening complications. Stx comprises two toxin types, Stx1 and Stx2. Several Stx1/Stx2 subtypes have been identified in E. coli, which are variable in sequences, toxicity and host specificity. Here, we report the identification of a novel Stx2 subtype, designated Stx2k, in E. coli strains widely detected from diarrheal patients, animals, and raw meats in China over time. Stx2k exhibits varied cytotoxicity in vitro among individual strains. The Stx2k converting prophages displayed considerable heterogeneity in terms of insertion site, genetic content and structure. Whole genome analysis revealed that the stx2k-containing strains were genetically heterogeneous with diverse serotypes, sequence types, and virulence gene profiles. The nine stx2k-containing strains formed two major phylogenetic clusters closely with strains belonging to STEC, enterotoxigenic E. coli (ETEC), and STEC/ETEC hybrid. One stx2k-containing strain harbored one plasmid-encoded heat-stable enterotoxin sta gene and two identical copies of chromosome-encoded stb gene, exhibiting STEC/ETEC hybrid pathotype. Our finding enlarges the pool of Stx2 subtypes and highlights the extraordinary genomic plasticity of STEC strains. Given the wide distribution of the Stx2k-producing strains in diverse sources and their pathogenic potential, Stx2k should be taken into account in epidemiological surveillance of STEC infections and clinical diagnosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.