Abstract
Better understanding of uranyl toxicity in bacteria is necessary to optimize strains for bioremediation purposes or for using bacteria as biodetectors for bioavailable uranyl. In this study, after different steps of optimization, Escherichia colicells were exposed to uranyl at low pH to minimize uranyl precipitation and to increase its bioavailability. Bacteria were adapted to mid acidic pH before exposure to 50 or 80 µM uranyl acetate for two hours at pH≈3. To evaluate the impact of uranium, growth in these conditions were compared and the same rates of cells survival were observed in control and uranyl exposed cultures. Additionally, this impact was analyzedby two-dimensional differential gel electrophoresis proteomics to discover protein actors specifically present or accumulated in contact with uranium.Exposure to uranium resulted in differential accumulation of proteins associated with oxidative stress and in the accumulation of the NADH/quinone oxidoreductase WrbA. This FMN dependent protein performs obligate two-electron reduction of quinones, and may be involved in cells response to oxidative stress. Interestingly, this WrbA protein presents similarities with the chromate reductase from E. coli, which was shown to reduce uranyl in vitro.
Highlights
Uranium is a heavy radioactive metal naturally present on earth, which has been widely exploited for industrial and military applications
To help uncover the mechanisms of toxicity associated with exposure to uranyl, we developed an experimental model to expose the bacterial model Escherichia coli to uranium in conditions allowing uranium bioavailability and cells survival
Exposure of bacterial cells to uranyl has often been performed in water or water supplemented with 0.1 M NaCl or 0.1 M NaClO4 at various pH, including pH as low as 2 or 3, [7,35] or in the presence of strong uranyl complexing agents as citrate [17].These exposure conditions were used to avoid uranyl precipitation with phosphate that could occur in rich growth medium, or in minimal mineral medium containing phosphates.In addition, a large number of bacteria precipitate uranium in the form of inorganic uranyl-phosphate complexes at the cell surface or in the medium at neutral to mid acidic pH [7]
Summary
Uranium is a heavy radioactive metal naturally present on earth, which has been widely exploited for industrial and military applications. Uranyl may be associated to a large range of organic or inorganic ligands as carboxylates, carbonates or phosphates [3], that determine its solubility and its bioavailability, i.e. its ability to bind to or traverse the cell surface of an organism. These properties -called uranium speciation- have been demonstrated to be both pH and concentration dependant [3,4]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.