Abstract

RecA- mutants of Escherichia coli extensively degrade their DNA following UV irradiation. Most of this degradation is due to the recBC DNase, which suggests that the recA gene is involved in the control of recBC DNase in vivo. We have shown that purified recA protein inhibits the endonuclease and exonuclease activities of recBC DNase on single-stranded DNA. The extent of inhibition is dependent on the relative concentration of recA protein, recBC DNase, and the DNA substrate; inhibition is greatest when the concentrations of DNA and recBC DNase are low and the concentrations of recA protein is high. At fixed concentrations of recA protein and recBC DNase, inhibition is eliminated at high concentrations of DNA. In the presence of adenosine 5'-O-(3-thiotriphosphate), an ATP analog which stabilizes the binding of recA protein to both single- and double-stranded DNA, recA protein is a more potent inhibitor of the nuclease activities on single-stranded DNA and is a weak inhibitor of the exonuclease activity on double-stranded DNA. Inhibition of the latter is enhanced by oligodeoxynucleotides, which stimulate the binding of recA protein to double-stranded DNA. In the presence of adenosine 5'-O-(3-thiotriphosphate), recA protein also inhibits the action of exonuclease I on single-stranded DNA and of lambda exonuclease on double-stranded DNA. These observations are most consistent with the idea that recA protein protects DNA from recBC DNase by binding to DNA. RecA protein also blocks the endonucleolytic cleavage of gapped circular DNA by recBC DNase. Since both recA protein and recBC DNase have the ability under certain conditions to unwind duplex DNA and to displace strands, we looked for evidence that their combined action would enlarge gaps but found no extensive enlargement. D-loops, a putative intermediate in genetic recombination, are effectively protected against the action of recBC DNase by the E. coli single strand binding protein and by recA protein in the presence of adenosine 5'-O-(3-thiotriphosphate).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.