Abstract

Escherichia coli O157:H7 contamination of leafy green vegetables is an ongoing concern for consumers. Biofilm-associated pathogens are relatively resistant to chemical treatments, but little is known about their response to irradiation. Leaves of Romaine lettuce and baby spinach were dip inoculated with E. coli O157:H7 and stored at 4 degrees C for various times (0, 24, 48, 72 h) to allow biofilms to form. After each time, leaves were treated with either a 3-min wash with a sodium hypochlorite solution (0, 300, or 600 ppm) or increasing doses of irradiation (0, 0.25, 0.5, 0.75, or 1 kGy). Viable bacteria were recovered and enumerated. Chlorine washes were generally only moderately effective, and resulted in maximal reductions of 1.3 log CFU/g for baby spinach and 1.8 log CFU/g for Romaine. Increasing time in storage prior to chemical treatment had no effect on spinach, and had an inconsistent effect on 600 ppm applied to Romaine. Allowing time for formation of biofilm-like aggregations reduced the efficacy of irradiation. D(10) values (the dose required for a 1 log reduction) significantly increased with increasing storage time, up to 48 h postinoculation. From 0 h of storage, D(10) increased from 0.19 kGy to a maximum of 0.40 to 0.43 kGy for Romaine and 0.52 to 0.54 kGy for spinach. SEM showed developing biofilms on both types of leaves during storage. Bacterial colonization of the stomata was extensive on spinach, but not on Romaine. These results indicate that the protection of bacteria on the leaf surface by biofilm formation and stomatal colonization can reduce the antimicrobial efficacy of irradiation on leafy green vegetables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.