Abstract

The ability of a strain of waterborne Escherichia coli O157:H7 to colonize a glass flow cell and develop microcolonies when grown alone and with Pseudomonas aeruginosa PAO1 was examined. When introduced alone, planktonic E. coil were unable to attach to the glass surface. When introduced simultaneously with P. aeruginosa (co-inoculation), the two species coadhered to the surface. When E. coliwere introduced into a flow cell precolonized with a P. aeruginosa biofilm (precolonized), 10-fold more cells were retained than in the co-inoculated case. Both species were monitored nondestructively by time-lapse confocal microscopy, direct microscopy of the filtered effluent, and effluent plate counts. While more E. coli initially adhered in the precolonized system, E. coli microcolony formation occurred only in the co-inoculated system, where E. coil comprised 1% of the total surface-associated biovolume but greater than 50% of the biovolume near the edges of the flow cell. The hydrodynamics in the flow cell were evaluated using the finite volume analysis program CFX, revealing that shear stress was likely important in both initial attachment and steady-state colonization patterns. This research elucidates key factors which promote retention and subsequent biofilm development of E. coli 0157:H7. Bacteria exist in nature primarily in communities known as biofilms. These biofilms are usually characterized by differentiated structures, exhibit a different phenotype than their planktonic counterparts, and in nature most often consist of multispecies consortia (1, 2). An important process in shaping the formation and structure of some multispecies biofilms is the ability of certain species to coaggregate. In this process, planktonic cells adhere to genetically distinct cells in a biofilm or to other planktonic cells (3), thereby increasing biofilm formation. This process is growth-phase-dependent and is turned on and off by cells, suggestive that it may also play a role in dispersal and dissemination (4). Due to these and other complexities of the biofilm mode of growth, multiple species can coexist despite one organism having a much higher growth rate than another (5-7). In many cases, bacteria have been shown to gain a fitness advantage when residing in a mixed-species versus single-

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call