Abstract

Shiga toxin producing Escherichia coli (STEC) strains vary in acid resistance; however, little is known about the underlying mechanisms that result in strain specific differences. Among 25 STEC O157:H7 strains tested, 7 strains flocculated when grown statically for 18 h in minimal salts medium at 37°C, while 18 strains did not. Interestingly, the flocculation phenotype (cells came out of suspension) was found to correlate with degree of acid sensitivity in an assay with 400 mM acetic acid solution at pH 3.3 targeting acidified foods. Strains exhibiting flocculation were more acid sensitive and were designated FAS, for flocculation acid sensitive, while the acid resistant strain designated PAR for planktonic acid resistant. Flocculation was not observed for any strains during growth in complex medium (Luria Bertani broth). STEC strains B201 and B241 were chosen as representative FAS (2.4 log reduction) and PAR (0.15 log reduction) strains, respectively, due to differences in acid resistance and flocculation phenotype. Results from electron microscopy showed evidence of fimbriae production in B201, whereas fimbriae were not observed in B241.Curli fimbriae production was identified through plating on Congo red differential medium, and all FAS strains showed curli fimbriae production. Surprisingly, 5 PAR strains also had evidence of curli production. Transcriptomic and targeted gene expression data for B201 and B241indicated that csg and hde (curli and acid induced chaperone genes, respectively) expression positively correlated with the phenotypic differences observed for these strains. These data suggest that FAS strains grown in minimal medium express curli, resulting in a flocculation phenotype. This may be regulated by GcvB, which positively regulates curli fimbriae production and represses acid chaperone proteins. RpoS and other regulatory mechanisms may impact curli fimbriae production, as well. These findings may help elucidate mechanisms underlying differences among STEC strains in relating acid resistance and biofilm formation.

Highlights

  • Shiga toxin producing Escherichia coli (STEC) O157:H7 and some related serotypes are of particular interest in food safety and public health due to their ability to colonize a human host with a low infectious dose, as little as 2–2,000 cells for foodborne outbreak strains, and cause severe illness (Buchanan and Doyle, 1997)

  • All strains grew normally in LBG, flocculation and curli production was found to correlate with acid sensitivity in a minimal medium, M9GT

  • Our findings agree with previous research that determined that E. coli does not express curli in static broth (LBG) or agar plates at 37◦C (Barnhart and Chapman, 2006)

Read more

Summary

Introduction

Shiga toxin producing Escherichia coli (STEC) O157:H7 and some related serotypes are of particular interest in food safety and public health due to their ability to colonize a human host with a low infectious dose, as little as 2–2,000 cells for foodborne outbreak strains, and cause severe illness (Buchanan and Doyle, 1997). Acid and acidified food products are defined as foods having a pH of 4.6 or lower, which prevents residual spores from germinating as mandated in the United States Code of Federal Regulations (21 CFR 114; US Food Drug Administration, 2012). These foods contain a variety of organic acids, which contribute to flavor and have antimicrobial effects (Breidt et al, 2004; Oh et al, 2009). Disease outbreaks of E. coli O157:H7 from acid and acidified foods, such as the multi-state outbreak in apple cider, have made the relationship between the antimicrobial effects of weak acids and E. coli’s acid resistance systems an important concern (Miller and Kaspar, 1994; Buchanan and Doyle, 1997; Rangel et al, 2005)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call