Abstract

In Escherichia coli the mutY (or micA)-dependent DNA mismatch repair pathway can convert A degrees G and A degrees C mismatches to C.G and G.C base pairs, respectively, through a short repair-tract mechanism. The MutY protein has been purified to near homogeneity from an E. coli overproducer strain. Purified MutY has been shown to contain both N-glycosylase and 3' apurinic/apyrimidinic (AP) endonuclease activities. The N-glycosylase removes the mispaired adenines of A degrees G and A degrees C mismatches, and the AP endonuclease acts on the first phosphodiester bond 3' to the AP sites. The N-glycosylase and the nicking (combined N-glycosylase and AP endonuclease) activities copurified through multiple chromatographic steps without a change in relative specific activities. Furthermore, both N-glycosylase and AP endonuclease activities can be recovered by renaturation of a single polypeptide band from an SDS/polyacrylamide gel. Renaturation required the presence of iron and sulfide. These findings suggest that the MutY protein, like endonuclease III, is an iron-sulfur protein. DNA fragments with A degrees C mismatches were 20-fold less active than DNA with A degrees G mispairs as a substrate for purified MutY.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.