Abstract

Pathophysiology of Escherichia coli sepsis is complex involving circulating bacterial products, cytokine release, and sustained bacteremia resulting in the damage of vascular endothelium. Here, it is shown that E. coli K1 produced cytopathogenicity of human brain microvascular endothelial cells (HBMEC), that constitute the blood–brain barrier. Whole bacteria or their conditioned medium produced severe HBMEC damage suggesting E. coli K1-cytopathogenicity is a contact-independent process. Using lipopolysaccharide (LPS) inhibitor, polymyxin B, purified LPS extracted from E. coli K1 as well as LPS mutant derived from E. coli K1, we showed that LPS is not the sole determinant of E. coli K1-mediated HBMEC death. Bacterial product(s) for HBMEC cytopathogenicity was heat-labile suggesting LPS-associated proteins. Several isogenic gene-deletion mutants (ΔompA, ΔibeA, ΔibeB, Δcnf1) exhibited HBMEC cytopathogenicity similar to that produced by wild type E. coli K1. E. coli K1-mediated HBMEC death was independent of phosphatidylinositol 3-kinase (PI3K) but dependent partially on focal adhesion kinase (FAK) using HBMEC expressing dominant negative FAK and PI3K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.