Abstract

The discovery of pathogen-recognition receptors such as Toll-like receptors on platelets has led to the emergence of the concept of platelets as important components of the host response to infection. Escherichia coli (E. coli)-mediated sepsis is a serious illness characterized by the occurrence of thrombocytopenia. Whereas there has been a wealth of research on platelet activation by Gram-positive bacteria, little is known about the mechanisms associated with Gram-negative bacteria-induced platelet activation with Gram-negative bacteria. To determine the mechanisms by which Gram-negative E. coli induces platelet aggregation. Induction of platelet aggregation with E. coli strain O157:H7 was tested in platelet-rich plasma (PRP), washed platelets, and serum depleted of complement factors. Platelet inhibitors (against αII b β3 , glycoprotein Ibα and FcγRIIa) were used. Platelet thromboxane synthesis was analyzed after E. coli stimulation. Cell binding assays were used to assess the ability of E. coli to support platelet adhesion. Trypsinization was used to determine the role of E. coli surface proteins. E. coli-induced aggregation in PRP was donor-dependent. E. coli O157:H7 induced aggregation with a lag time of 6.9 ± 1.3 min in an αII b β3 -dependent and FcγRIIa-dependent manner. Furthermore, this interaction was enhanced by the presence of complement, and was dependent on thromboxane synthesis. These results show E. coli to be a potent inducer of platelet aggregation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.