Abstract

HU is one of the most abundant DNA binding proteins in Escherichia coli. We find that it binds strongly to DNA containing an abasic (AP) site or tetrahydrofuran (THF) (apparent Kd ≈50 nM). It also possesses an AP lyase activity that cleaves at a deoxyribose but not at a THF residue. The binding and cleavage of an AP site was observed only with the HUαβ heterodimer. Site-specific mutations at K3 and R61 residues led to a change in substrate binding and cleavage. Both K3A(α)K3A(β) and R61A(α)R61A(β) mutant HU showed significant reduction in binding to DNA containing AP site; however, only R61A(α)R61A(β) mutant protein exhibited significant loss in AP lyase activity. Both K3A(α)K3A(β) and R61K(α)R61K(β) showed slight reduction in AP lyase activities. The function of HU protein as an AP lyase was confirmed by the ability of hupA or hupB mutations to further reduce the viability of an E. coli dut(Ts) xth mutant, which generates lethal AP sites at 37°C; the hupA and hupB derivatives, respectively, had a 6-fold and a 150-fold lower survival at 37°C than did the parental strain. These data suggest, therefore, that HU protein plays a significant role in the repair of AP sites in E. coli.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call