Abstract

Nanosilver (silver nanoparticles) has the ability to anchor to the bacterial cell membrane and subsequently penetrate it, thereby causing structural changes (i.e. permeability) in the cell membrane and death of the cell. The bacterial responses to the presence of nanosilver usually vary depending on the concentration of nanosilver particles, exposure time and the bacterial physiological stage. Since bacterial anabolism dependents upon a stoichiometric ratio of carbon and inorganic elements (nutrients), the macronutrient ratio, i.e. carbon to nitrogen ratio (C/N) thus plays an important role of bacterial responses to the exposure of nanosilver. This study investigated the responses of Escherichia coli to the exposure of nanosilver under variable growth conditions. It was discovered that E. coli grown under different growth conditions had different responses to the presence of nanosilver. E. coli had least resistance to the toxicity of nanosilver when cultured under carbon-limited conditions. However, the presence of rhamnolipid, a commonly utilized biosurfactant for soil remediation increased the resistance of E. coli to nanosilver. The transport of E. coli cultured under carbon-limited conditions was further studied in silica sand columns. E. coli adsorption in silica sand increased when cultured in the presence of nanosilver. On the contrary, E. coli adsorption in silica sand was significantly reduced when cultured in the presence of rhamnolipid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.