Abstract

Decompensated cirrhosis with fibrosis progression causes portal hypertension followed by an oedematous intestinal tract. These conditions weaken the barrier function against bacteria in the intestinal tract, a condition called leaky gut, resulting in invasion by bacteria and bacterial components. Here, we investigated the role of outer-membrane vesicles (OMVs) of Escherichia coli, which is the representative pathogenic gut-derived bacteria in patients with cirrhosis in the pathogenesis of cirrhosis. We investigated the involvement of OMVs in humans using human serum and ascites samples and also investigated the involvement of OMVs from E. coli in mice using mouse liver-derived cells and a mouse cirrhosis model. In vitro, OMVs induced inflammatory responses to macrophages and neutrophils, including the upregulation of C-type lectin domain family 4 member E (Clec4e), and induced the suppression of albumin production in hepatocytes but had a relatively little direct effect on hepatic stellate cells. In a mouse cirrhosis model, administration of OMVs led to increased liver inflammation, especially affecting the activation of macrophages, worsening fibrosis and decreasing albumin production. Albumin administration weakened these inflammatory changes. In addition, multiple antibodies against bacterial components were increased with a progressing Child-Pugh grade, and OMVs were detected in ascites of patients with decompensated cirrhosis. In conclusion, OMVs induce inflammation, fibrosis and suppression of albumin production, affecting the pathogenesis of cirrhosis. We believe that our study paves the way for the future prevention and treatment of cirrhosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.