Abstract
To elucidate the antibacterial mechanisms of the ceramics magnesium oxide (MgO), calcium oxide (CaO) and zinc oxide (ZnO), damage to bacteria caused by these powder slurries are studied on the basis of change insensitivities to antibiotics, of which the primary inhibitory actions are understood well. Four kinds of antibiotics, penicillin G, chloramphenicol, nalidixic acid and rifampicin, were used as the selective reagents. The MgO and CaO powder slurries increased the sensitivities of Escherichia coli to rifampicin and chloramphenicol. Though the MgO and CaO powder slurries have high pH values, changes in the sensitivities by the MgO and CaO powder slurries were obviously different from those via alkaline treatment. The ZnO powder slurry enhanced the sensitivity of the E. coli to chloramphenicol. This result suggests that the antibacterial actions of MgO and CaO powder slurries were different from those of ZnO powder slurry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.