Abstract

The production of disulfide bond-containing recombinant proteins in Escherichia coli has traditionally been done by either refolding from inclusion bodies or by targeting the protein to the periplasm. However, both approaches have limitations and were developed to allow the production of proteins with disulfide bonds in the cytoplasm of E. coli: i) engineered strains with deletions in the disulfide reduction pathways, e.g. SHuffle, and ii) the co-expression of oxidative folding catalysts, e.g. CyDisCo. However, to our knowledge, the effectiveness of these strategies has not been properly evaluated. Here, we systematically compare the purified yields of 14 different proteins of interest (POI) that contain disulfide bonds in their native state when expressed in both systems. We also compared the effects of different background strains, commonly used promoters, and two media types: defined and rich autoinduction. In rich autoinduction media, POI which can be produced in a soluble (non-native) state without a system for disulfide bond formation were produced in higher purified yields from SHuffle, whereas all other proteins were produced in higher purified yields using CyDisCo. In chemically defined media, purified yields were at least 10x higher in all cases using CyDisCo. In addition, the quality of the three POI tested was superior when produced using CyDisCo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call