Abstract
Madagascar exhibits high endemic biodiversity that has evolved with sustained and stable rates of speciation over the past several tens of millions of years. The topography of Madagascar is dominated by a mountainous continental rift escarpment, with the highest plant diversity and rarity found along the steep, eastern side of this geographic feature. Using a process-explicit model, we show that precipitation-driven erosion and landward retreat of this high-relief topography creates transient habitat organization through multiple mechanisms, including catchment expansion, isolation of highland remnants, and formation of topographic barriers. Habitat isolation and reconnection on a million-year timescale serves as an allopatric speciation pump creating the observed biodiversity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.