Abstract

Water dissociation is an important reaction involved in many industrial processes. In this computational study, the dissociation of water is used as a model reaction for probing the activity of interfacial sites of globally optimized ZrO2 supported Pt and Rh clusters under the framework of density functional theory. Our findings demonstrate that the perimeter sites of these small clusters can activate water, but the dissociation behavior varies considerably between sites. It is shown that the studied clusters break scaling relationships for water dissociation, suggesting that these catalysts may achieve activities beyond the maximum imposed by such relations. Furthermore, we observed large differences in the thermodynamics of the water dissociation reaction between global minimum and near-global minimum isomers of the clusters. Overall, our results highlight the uniqueness of interfacial sites in catalytic reactions and the need for developing new concepts and tools to deal with the associated complexity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.