Abstract

We compare life-history models with the Beverton–Holt approach of escapement goal analysis. We model the life history of a sockeye salmon ( Onchorhynchus nerka ) population from a spawning stage, through juvenile and adult stages, and ending with adults that return to spawn. We fit models to data by statistically comparing predicted and observed numbers of four dominant adult ages. Posterior estimates of parameters from Markov chain Monte Carlo simulations are then used to assess optimal harvest policies. We search for policies that produce the highest average yield. We find that it is possible to detect density dependence with a life-history model where analysis of Beverton–Holt stock–recruitment relationship fails to do so. We find that Beverton–Holt relationships produce policies and long-term yield estimates that are inconsistent with empirical trends. Conversely, we find that optimal spawning stock sizes and maximum sustained yield estimates using the life-history model estimate are consistent with the historical behavior of fisheries examined. Adding smolt data to the analysis does not substantially change predicted optimal spawning stock size, but decreases the variance in estimated posterior parameter distributions and policy variable distributions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.