Abstract

Entry determinants in the XPR1 receptor for the xenotropic/polytropic mouse leukemia viruses (XP-MLVs) lie in its third and fourth putative extracellular loops (ECLs). The critical ECL3 receptor determinant overlies a splice donor and is evolutionarily conserved in vertebrate XPR1 genes; 2 of the 3 rare replacement mutations at this site destroy this receptor determinant. The 13 residue ECL4 is hypervariable, and replacement mutations carrying an intact ECL3 site alter but do not abolish receptor activity, including replacement of the entire loop with that of a jellyfish (Cnidaria) XPR1. Because ECL4 deletions are found in all X-MLV-infected Mus subspecies, we deleted each ECL4 residue to determine if deletion-associated restriction is residue-specific or is effected by loop size. All deletions influence receptor function, although different deletions affect different XP-MLVs. Thus, receptor usage of a constrained splice site and a loop that tolerates mutations severely limits the likelihood of host escape mutations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.