Abstract

Josephson circuits have been ideal systems to study complex non-linear dynamics which can lead to chaotic behavior and instabilities. More recently, Josephson circuits in the quantum regime, particularly in the presence of microwave drives, have demonstrated their ability to emulate a variety of Hamiltonians that are useful for the processing of quantum information. In this paper we show that these drives lead to an instability which results in the escape of the circuit mode into states that are not confined by the Josephson cosine potential. We observe this escape in a ubiquitous circuit: a transmon embedded in a 3D cavity. When the transmon occupies these free-particle-like states, the circuit behaves as though the junction had been removed, and all non-linearities are lost. This work deepens our understanding of strongly driven Josephson circuits, which is important for fundamental and application perspectives, such as the engineering of Hamiltonians by parametric pumping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.