Abstract

Predation is a common cause of death in numerous organisms, and a host of antipredator defences have evolved. Such defences often have a genetic background as shown by significant heritability and microevolutionary responses towards weaker defences in the absence of predators. Flight initiation distance (FID) is the distance at which an individual animal takes flight when approached by a human, and hence, it reflects the life-history compromise between risk of predation and the benefits of foraging. Here, we analysed FID in 128 species of birds in relation to three measures of genetic variation, band sharing coefficient for minisatellites, observed heterozygosity and inbreeding coefficient for microsatellites in order to test whether FID was positively correlated with genetic variation. We found consistently shorter FID for a given body size in the presence of high band sharing coefficients, low heterozygosity and high inbreeding coefficients in phylogenetic analyses after controlling statistically for potentially confounding variables. These findings imply that antipredator behaviour is related to genetic variance. We predict that many threatened species with low genetic variability will show reduced antipredator behaviour and that subsequent predator-induced reductions in abundance may contribute to unfavourable population trends for such species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.