Abstract

Visually evoked escape flight initiation in Drosophila, according to the accepted account, involves a rapid extension of the middle legs that propels the fly into the air while the wings are still folded. This description has remained unchallenged and is accounted for in terms of the activation of a simple neural circuit, the Giant fibre (GF) system. The accepted description of escape is however inconsistent with the sequence of events recorded when the GF system is stimulated. Specifically, previous electrophysiological recordings have shown that the wing depressor muscles are activated before the wings are in a position to be depressed because they have not yet been elevated. Here we show that the accepted behavioural description is wrong. Escape flight initiation actually begins with wing elevation. The current model of the GF system is revised to account for the actual sequence of events that occur when a fly escapes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.