Abstract

We explore the escape dynamics of active ring polymers confined in a cylindrical nanochannel using Brownian dynamics. Our simulation results show that the escape time decreases with the increase of the Péclet number, which is not noticeable between the two stages of the escape process, based on whether the center of mass of the polymer is inside or outside the nanochannel. However, the monomer motion trajectory of the active polymer is very different from that of the passive polymer, similar to the snake-like motion with uniform velocity. The passive polymer, however, is in constant fugitive motion with increased velocity at the tail end of the escape. Our work is vital for understanding the escape dynamics of active ring polymers in the confined nanochannel, which provides new perspectives on their characterization and analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.