Abstract

The orbital dynamics of a spacecraft, or a comet, or an asteroid in the Earth-Moon system in a scattering region around the Moon using the three dimensional version of the circular restricted three-body problem is numerically investigated. The test particle can move in bounded orbits around the Moon or escape through the openings around the Lagrange points $L_1$ and $L_2$ or even collide with the surface of the Moon. We explore in detail the first four of the five possible Hill's regions configurations depending on the value of the Jacobi constant which is of course related with the total orbital energy. We conduct a thorough numerical analysis on the phase space mixing by classifying initial conditions of orbits in several two-dimensional types of planes and distinguishing between four types of motion: (i) ordered bounded, (ii) trapped chaotic, (iii) escaping and (iv) collisional. In particular, we locate the different basins and we relate them with the corresponding spatial distributions of the escape and collision times. Our outcomes reveal the high complexity of this planetary system. Furthermore, the numerical analysis suggests a strong dependence of the properties of the considered basins with both the total orbital energy and the initial value of the $z$ coordinate, with a remarkable presence of fractal basin boundaries along all the regimes. Our results are compared with earlier ones regarding the planar version of the Earth-Moon system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.