Abstract

Magnetic order has been proposed to arise from a variety of defects, including vacancies, antisites, and grain boundaries, which are relevant in numerous electronics and spintronics applications. Nevertheless, its magnetism remains controversial due to the lack of structural analysis. The escalation of ferromagnetism in vanadium-doped WSe2 monolayer is herein demonstrated by tailoring complex configurations of Se vacancies (SeVac ) via post heat-treatment. Structural analysis of atomic defects is systematically performed using transmission electron microscopy (TEM), enabled by the monolayer nature. Temperature-dependent magnetoresistance hysteresis ensures enhanced magnetic order after high-temperature heat-treatment, consistent with magnetic domain analysis from magnetic force microscopy (MFM). The vanadium-Se vacancy pairing is a key to promoting ferromagnetism via spin-flip by electron transfer, predicted from density-functional-theory (DFT) calculations. The approach toward nanodefect engineering paves a way to overcome weak magnetic order in diluted magnetic semiconductors (DMSs) for renovating semiconductor spintronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.