Abstract

During the past decade extended-spectrum beta-lactamase (ESBL) producing Enterobacteriaceae have become a matter of great concern in human and veterinary medicine. In this cross-sectional study fecal swabs of a geographically representative number of Swiss cattle at slaughterhouse level were sampled i) to determine the occurrence of ESBL producing Enterobacteriaceae in the Swiss slaughter cattle population younger than 2 years, and ii) to assess risk factors for shedding ESBL producing Enterobacteriaceae. In total, 48 (8.4%; 95% C.I. 6.3–11.1%) independent ESBL producing Enterobacteriaceae were detected among the 571 tested animals. Species identification revealed 46 E. coli strains, one Enterobacter cloacae and one Citrobacter youngae. In view of beta-lactam antibiotics, all 48 isolates were resistant to ampicillin, cephalothin and cefpodoxime. Forty-five (93.8%) isolates were resistant cefuroxime; one (2.1%) isolate to cefoxitin, 28 (58.3%) isolates to cefotaxime, 2 (4.2%) isolates to ceftazidime, and 2 (4.2%) isolates to cefepime. Risk factors for shedding ESBL producing Enterobacteriaceae were (i) age (OR 0.19 and 0.12 in age category 181 d to 1y and 1y to 2 y compared to ≤180 d), (ii) primary production type, meaning dairy compared to beef on farm of origin (OR 5.95), and (iii) more than 1 compared to less than 1 animal movement per d per 100 animals on farm of origin (OR 2.37).

Highlights

  • Antimicrobial resistance in bacteria has emerged as a problem in both human and veterinary medicine

  • Animals originating from farms with primary production type ’’dairy‘‘ were at a 5.95 times greater risk of shedding extended spectrum beta-lactamases (ESBL)-producing Enterobacteriaceae than animals originating from farms with primary production type ’’beef‘‘

  • Animals originating from farms with more than one animal movement per day per 100 animals were at a 2.37 times higher risk of shedding ESBL-producing Enterobacteriaceae than animals originating form farms with less than one animal movement per day100 animals

Read more

Summary

Introduction

Antimicrobial resistance in bacteria has emerged as a problem in both human and veterinary medicine. One of the currently most important resistance mechanisms in Enterbacteriaceae, which reduces the efficacy even of modern expanded-spectrum cephalosporins (except cephamycins and carbapenems) and monobactams is based on plasmid-mediated production of enzymes that inactivate these compounds by hydrolyzing their beta-lactam ring. Such resistance is encoded by an increasing number of different point-mutational variants, called extended spectrum beta-lactamases (ESBL), of classical broad-spectrum beta-lactamases (BSBL): most are derivates of TEM and SHV beta-lactamase families, whereas other groups, such as CTX-M, OXA, PER and VEB beta-lactamases have been described more recently [1]. As a matter of growing concern, resistance caused by ESBLs is often associated with resistance to other classes of antibiotics like fluoroquinolones, aminoglycosides and trimethoprim-sulfamethoxazole [3,4]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call