Abstract
The degradation starting time is an important variable affecting the accuracy of degradation path prediction, but little work has been considered in existing studies. This article investigates the problem of predicting the performance of rolling element bearings based on early degradation analysis. Based on an improved dual linear structural support vector machine with envelope spectrum algorithm and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\mu +4\sigma$</tex-math></inline-formula> criteria, a new health indicator is proposed to detect the degradation starting time. As well the detected time is sensitive to early anomalies. In addition, according to the degradation starting time, a convolutional neural network prediction model is established to predict the degradation path. Experiments show the effectiveness and superiority of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.