Abstract

Erythrosine, a synthetic red dye widely used in food products, has been linked to potential health risks, raising concerns about its safety. This study aimed to evaluate the subacute toxicity of the synthetic food dye erythrosine in the brains of Wistar rats. Twenty-four 6- to 7-week-old female rats were randomly divided into four groups of six (n = 6); the control group and the other three groups, which were established on the basis of erythrosine's acceptable daily intake (ADI, 0.1 mg per kg body weight); 1/4 ADI, 1/2 ADI, and ADI; for 28 days. Significant alterations in the enzymatic activity of catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GST), and acetylcholinesterase (AchE) were observed at all erythrosine dosages, with a substantial decline at ADI dosages (p ≤ 0.05). Increased oxidative stress markers, viz., malondialdehyde content and lactate dehydrogenase activity, were observed in ADI-administered rats. The H2O2 content decreased at 1/4 ADI and 1/2 ADI dosages and thereafter increased with increasing dosage. The comet assay demonstrated that the ADI dosage for 28 days resulted in the most significant damage, as evidenced by the increased tail length, tail DNA percentage, and tail moment. Light microscopy revealed various anomalies in brain histology, such as atrophies, vacuolization, shrunken cells, pyknotic nuclei, and reduced cell density. The results of the present study demonstrated that erythrosine disrupts the normal histopathology of the brain, suppresses antioxidative and acetylcholinesterase enzymatic activity, and increases lipid peroxidation and DNA damage, thereby resulting in erythrosine toxicity even at doses lower than the ADI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.