Abstract

Plasma renin is not elevated in recombinant human erythropoietin (rhEPO)-induced hypertension but angiotensin converting enzyme inhibitors reduce blood pressure in both human and animal studies. Since rhEPO elevates renin and angiotensinogen messenger RNAs in angiotensin II target tissues such as the aorta, we explored the actions of rhEPO on renin-angiotensin system-related gene transcription of cultured rat vascular smooth muscle cells. To separate direct actions of rhEPO from those mediated secondarily by potential activation of the renin-angiotensin system, vascular smooth muscle cells were cultured with rhEPO and enalapril to inhibit the angiotensin converting enzyme and losartan to inhibit angiotensin II type 1 receptors. Vascular smooth muscle cells cultured with rhEPO (6-8 units/ml) demonstrated elevations (40-120%) in messenger RNAs of the renin-angiotensin system (renin, angiotensinogen, angiotensin receptor types 1 and 2) and increased levels of several messenger RNAs known to respond to angiotensin II (transforming growth factor-beta, insulin-like growth factor-II, epidermal growth factor, c-fos and platelet-derived growth factor). In contrast, cells cultured in the presence of rhEPO and enalapril or losartan showed elevations of messenger RNA for only the two types of angiotensin II receptor. This increase was higher than that obtained when cells were cultured with rhEPO or either antagonist alone. The increase in specific binding of angiotensin II to cells cultured in the presence of rhEPO and enalapril or rhEPO and losartan paralleled the changes in receptor messenger RNA. rhEPO exerts its primary action on vascular smooth muscle cells via an increase in angiotensin receptor messenger RNA, resulting in a parallel increase in angiotensin II receptor expression. We suggest that increased receptor expression secondarily mediates the expression of other renin-angiotensin system messenger RNAs, which leads to angiotensin II-responsive gene transcription. The elevation in angiotensin II receptors, as observed in response to rhEPO, may provide a mechanism by which other forms of renin-dependent hypertension are initiated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.