Abstract

Erythropoietin (Epo) promotes functional recovery following spinal cord injury (SCI); however, the exact underlying mechanisms are yet to be determined. Although endogenous neural stem cells (NSCs) in the adult spinal cord are a therapeutic target in SCI models, the effect of Epo on this NSC population remains unknown. The present study investigated the effects of Epo on endogenous NSCs in the adult spinal cord both in vitro and in vivo. For the in vivo analyses, normal rats (Normal) and SCI contusion model rats (SCI) received either recombinant human Epo or saline treatment for 7 days (5,000 U/kg), and spinal cords were subsequently analyzed at 2, 8, and 14 days. For in vitro analyses, NSCs harvested from adult rat spinal cords were exposed to Epo (10 U/ml). A significant increase in β-tubulin+ new neurons (P<0.01) was observed at all three time points and O4+ new oligodendrocytes (P<0.05) at days 8 and 14 in the SCI+Epo group compared with the SCI+Saline group. This was concomitant with a prolonged activation of Epo signaling; however, no effect on NSCs proliferation was observed. Similar results were also obtained in vitro. Motor functional recovery was also noted at days 8 and 14 only in the Epo-treated SCI rats. Although the expression of Epo and EpoR significantly increased in Normal+Epo rats compared with Normal+Saline rats (P<0.05), the cell numbers and phenotype were comparable between the two groups. To the best of the author's knowledge, this is the first study to demonstrate that Epo signaling promotes both neurogenesis and oligodendrogenesis following SCI and that these may represent the underlying mechanisms for the functional recovery and therapeutic effects of Epo following SCI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call