Abstract
BackgroundTreatment with erythropoietin (Epo) in experimental autoimmune encephalomyelitis (EAE), the rodent model of multiple sclerosis (MS), has consistently been shown to ameliorate disease progression and improve overall outcome. The effect has been attributed to modulation of the immune response and/or preservation of the central nervous system (CNS) tissue integrity. It remains unclear, however, if (a) Epo acts primarily in the CNS or the periphery and if (b) Epo’s beneficial effect in EAE is mainly due to maintaining CNS tissue integrity or to modulation of the immune response. If Epo acts primarily by modulating the immune system, where is this modulation required? In the periphery, the CNS or both?MethodsTo address these questions, we used two well-characterized transgenic mouse strains that constitutively overexpress recombinant human Epo (rhEpo) either systemically (tg6) or in CNS only (tg21) in a MOG-induced EAE model. We assessed clinical severity, disease progression, immunomodulation, and CNS tissue integrity, including neuronal survival.ResultsAlthough disease onset remained unaffected, EAE progression was alleviated in transgenic animals compared to controls with both lines performing equally well showing that expression of Epo in the periphery is not required; Epo expression in the CNS is sufficient. Immunomodulation was observed in both strains but surprisingly the profile of modulation differed substantially between strains. Modulation in the tg21 strain was limited to a reduction in macrophages in the CNS, with no peripheral immunomodulatory effects observed. In contrast, in the tg6 strain, macrophages were upregulated in the CNS, and, in the periphery of this strain, T cells and macrophages were downregulated. The lack of a consistent immunomodulatory profile across both transgenic species suggests that immunomodulation by Epo is unlikely to be the primary mechanism driving amelioration of EAE. Finally, CNS tissue integrity was affected in all strains. Although myelin appeared equally damaged in all strains, neuronal survival was significantly improved in the spinal cord of tg21 mice, indicating that Epo may ameliorate EAE predominantly by protecting neurons.ConclusionsOur data suggests that moderate elevated brain Epo levels provide clinically significant neuroprotection in EAE without modulation of the immune response making a significant contribution.
Highlights
Treatment with erythropoietin (Epo) in experimental autoimmune encephalomyelitis (EAE), the rodent model of multiple sclerosis (MS), has consistently been shown to ameliorate disease progression and improve overall outcome
Using two transgenic mouse models that either overexpress Epo systemically or limited to the central nervous system (CNS), we show for the first time that prevention of neuronal loss in the spinal cord appears to be the primary advantage of Epo treatment in EAE, rather than immunomodulation
Direct peripheral effects of recombinant human Epo (rhEpo) in tg21 mice can be excluded as increases in hematocrit, rhEpo in the blood, or changes in the immune compartment were not detected under any circumstances indicating that possible leakage of rhEpo from the CNS due to blood-brain barrier breakdown did not occur
Summary
Treatment with erythropoietin (Epo) in experimental autoimmune encephalomyelitis (EAE), the rodent model of multiple sclerosis (MS), has consistently been shown to ameliorate disease progression and improve overall outcome. The effect has been attributed to modulation of the immune response and/or preservation of the central nervous system (CNS) tissue integrity. It remains unclear, if (a) Epo acts primarily in the CNS or the periphery and if (b) Epo’s beneficial effect in EAE is mainly due to maintaining CNS tissue integrity or to modulation of the immune response. Substantial irreversible axonal damage and neuronal cell death are thought to be an essential cause of non-remitting clinical disability in primary and secondary progressive MS. No clinically effective therapy has been established to prevent axonal and neuronal damage in this neuroinflammatory disease, and despite much research, understanding of the etiology and pathogenesis of this condition remains limited. The exact mechanisms behind Epo’s neuroprotective effects are not well understood, its putative antiinflammatory actions and enhancement of survival signals probably play a key role [7, 25,26,27,28,29]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.