Abstract

In addition to its function as a regulator of hematopoiesis, the cytokine erythropoietin (Epo) initiates adaptive cellular responses to both moderate environmental challenges and tissue damaging insults in various non-hematopoietic mammalian tissues. Epo's neuroprotective and neuroregenerative functions mediated through janus kinases (JAK)/signal transducers and activators of transcription (STAT) transduction pathways and regulation of Epo and Epo receptor expression in the nervous system by hypoxia inducible factor (HIF) have been documented in a variety of in vitro and in vivo studies and homologs of the human Epo gene are present in fish, amphibians and mammals. The present study reproduces the hallmarks of Epo-mediated mammalian neuroprotection in the grasshopper nervous system. Recombinant human Epo (rhEpo) increases the survival of dissociated grasshopper brain neurons under normoxic and hypoxic conditions and promotes the regeneration of neurites in vitro. In addition, reestablishment of sound source localization after unilateral tympanic nerve crush injury was accelerated and more complete after application of rhEpo, demonstrating in vivo support of auditory receptor cell axon regeneration. Immunoblots of central nervous tissue extracts from mouse, grasshopper, crayfish and leech labeled protein bands of ∼38 kDa, fitting to the molecular weight of Epo reported in earlier studies. These results indicate that a ligand/receptor system that shares structural and functional similarities with mammalian Epo and Epo receptor exerts neuroprotective and neuroregenerative effects in insects. With both upstream (HIF system) and downstream (JAK/STAT pathway) elements of the mammalian Epo system being present in insects and other invertebrates, Epo-like signaling involved in tissue protection appears to be an ancient beneficial function shared by vertebrates and invertebrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.