Abstract

BackgroundThis study aimed to investigate role of erythropoietin in atherosclerosis and explore whether underlying mechanism is associated with PI3K/AKT/mTOR pathway. MethodsHigh-fat-diet-induced atherosclerosis model was established in apolipoprotein E knockout mice (C57BL/6 genetic background). Mice were randomly divided into the control group and the EPO group. Hematoxylin-eosin was performed for the determination of atherosclerotic lesions. The expression levels of related proteins were detected by western blot analysis. ResultsErythropoietin significantly enhanced the incidence of hemorrhage in atherosclerotic plaques compared with the control group. The proteins’ expression signaling pathways (including PI3K, AKT, and mTOR) and angiogenesis-related proteins (VEGF, COX-2, and HIF-1α) were proved to be up-regulated by erythropoietin. Additionally, erythropoietin significantly enhanced the incidence of hemorrhage in the atherosclerotic plaques compared with the control group. The vitro experiments were conducted in macrophages at 21% O2 or 1% O2. The data showed that expression of p-PI3K, p-AKT, p-mTOR, VEGF, COX-2, and HIF-1α related proteins increased in 1% O2 group than 21% O2 group. Moreover, compared with control group, protein expression including p-PI3K, p-AKT, p-mTOR, VEGF, COX-2, and HIF-1α was markedly increased in EPO group, decreased in inhibitors group, and similar results were observed in EPO+ inhibitors group. ConclusionThe present study demonstrated that erythropoietin might promote angiogenesis in atherosclerotic vulnerable by activating PI3K/AKT/mTOR signaling pathway in atherosclerotic, providing a novel therapeutic target for atherosclerotic targeted therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call