Abstract

The objective of this study was to explore the neuroprotective molecular mechanisms of erythropoietin (EPO) in rats following spinal cord injury (SCI). First, a standard SCI model was established. After drug or saline treatment was administered, locomotor function was evaluated in rats using the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale. H&E, Nissl, and TUNEL staining were performed to assess the ratio of cavities, number of motor neurons, and apoptotic cells in the damaged area. The relative protein and mRNA expressions were examined using western blot and qRT-PCR analyses, and the inflammatory markers, axon special protein, and neuromuscular junctions (NMJs) were detected by immunofluorescence. Both doses of EPO notably improved locomotor function, but high-dose EPO was more effective than low-dose EPO. Moreover, EPO reduced the cavity ratio, cell apoptosis, and motor neuron loss in the damaged area, but enhanced the autophagy level and extracellular-regulated protein kinase (ERK) activity. Treatment with an ERK inhibitor significantly prevented the effect of EPO on SCI, and an activator mimicked the benefits of EPO. Further investigation revealed that EPO promoted SCI-induced autophagy via the ERK signaling pathway. EPO activates autophagy to promote locomotor function recovery in rats with SCI via the ERK signaling pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.