Abstract
Erythropoietin (EPO) is the main hematopoietic growth factor prescribed to overcome anemia. It is also a neuroprotective agent. EPO binds to the erythropoietin receptor (EPOR), expressed on neurons and glial cells in the central nervous system (CNS), and exerts its neuroprotective potencies through the EPO-EPOR complex. The mechanism of the signal transduction pathways of EPO on glial cells is defined. EPO-EPOR complex can affect neurological disorders, such as Alzheimer's disease, Parkinson's disease, ischemia, retinal injury, stroke, hypoxia, trauma, and demyelinating diseases, through acting downstream signaling pathways. This review focuses on the roles of EPO in different types of glial cells (astrocytes, microglia, oligodendrocytes, and Schwann cells) and their relationships with signaling pathways. Information on the non-erythropoietic action of EPO and related signaling systems in connection with glial cells could enhance EPO treatment to restore different CNS disorders and propose new perspectives on the neuroprotective potential of EPO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.