Abstract

Up to 20% of patients with total joint arthroplasty will develop radiographic evidence of aseptic loosening (AL), which most likely results from an inflammatory response to billions of wear debris shed from the implant. Our previous work has demonstrated that erythromycin (EM), a macrolide antibiotic, inhibits wear debris-induced inflammatory osteoclastogenesis through the reduction of cytokine production and osteoclast differentiation, both of which involve the NF-kappaB pathway. The aim of the current study was to determine whether EM inhibits wear debris-induced inflammatory osteolysis in a murine osteolysis model. Ultrahigh molecular-weight polyethylene (UHMWPE) debris was introduced into established air pouches on BALB/c mice, followed by implantation of calvaria bone from syngeneic littermates. EM (2 mg/kg/day) was given to mice intraperitoneally 2 days before UHMWPE introduction and maintained until the sacrifice of the mice. Mice with and without EM treatment, as well as control mice injected with saline alone were included in this study. Pouch tissues were collected 14 days after UHMWPE inoculation for molecular and histology analysis. Our findings indicate that: (1) EM reduced UHMWPE-induced tissue inflammation, including the diminished pouch membrane thickness, reduced inflammatory cellular infiltration, and lowered IL-1beta and TNF-alpha expression (mRNA and protein); (2) EM inhibited UHMWPE-induced osteoclastogenesis, with reduced gene activation of RANK, RANKL, and CPK, and diminished RANKL expression in UHMWPE stimulated pouches, and (3) EM markedly reduced the number of TRAP(+) cells in pouch tissues, and protected against bone collagen depletion. In conclusion, this study provides the evidence that EM inhibits the UHMWPE particles-induced inflammatory osteolysis in a murine model, and represents a promising therapeutic candidate for the prevention and treatment of AL.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.