Abstract

We report a cross-talk free simultaneous three-wavelength digital holographic microscopy setup for spectroscopic imaging of biological cells during flow. The feasibility of the proposed measurement technique is demonstrated on erythrocytes, due to their unique morphology and dependency of hemoglobin (Hb) molecule absorption on wavelength. From the spectroscopic quantitative phase profiles of cells acquired during flow in a microfluidic device, we decoupled the refractive index and the physical thickness. We then used our quantitative phase imaging results to dynamically calculate the mean cell volume (MCV), mean corpuscular Hb concentration (MCHC), mean corpuscular Hb content (MCH) and sphericity index.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.