Abstract

Erythrocyte shape deformations are related to different important illnesses. In this paper, we focus on one of the most important: the Sickle cell disease. This disease causes the hardening or polymerization of the hemoglobin that contains the erythrocytes. The study of this process using digital images of peripheral blood smears can offer useful results in the clinical diagnosis of these illnesses. In particular, it would be very valuable to find a rapid and reproducible automatic classification method to quantify the number of deformed cells and so gauge the severity of the illness. In this paper, we show the good results obtained in the automatic classification of erythrocytes in normal cells, sickle cells, and cells with other deformations, when we use a set of functions based on integral-geometry methods, an active contour-based segmentation method, and a k-NN classification algorithm. Blood specimens were obtained from patients with Sickle cell disease. Seventeen peripheral blood smears were obtained for the study, and 45 images of different fields were obtained. A specialist selected the cells to use, determining those cells which were normal, elongated, and with other deformations present in the images. A process of automatic classification, with cross-validation of errors with the proposed descriptors and with other two functions used in previous studies, was realized.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.