Abstract

BackgroundErythrocyte pyruvate kinase deficiency (PK deficiency) is an inherited hemolytic anemia that has been documented in the Abyssinian and Somali breeds as well as random bred domestic shorthair cats. The disease results from mutations in PKLR, the gene encoding the regulatory glycolytic enzyme pyruvate kinase (PK). Multiple isozymes are produced by tissue-specific differential processing of PKLR mRNA. Perturbation of PK decreases erythrocyte longevity resulting in anemia. Additional signs include: severe lethargy, weakness, weight loss, jaundice, and abdominal enlargement. In domestic cats, PK deficiency has an autosomal recessive mode of inheritance with high variability in onset and severity of clinical symptoms.ResultsSequence analysis of PKLR revealed an intron 5 single nucleotide polymorphism (SNP) at position 304 concordant with the disease phenotype in Abyssinian and Somali cats. Located 53 nucleotides upstream of the exon 6 splice site, cats with this SNP produce liver and blood processed mRNA with a 13 bp deletion at the 3’ end of exon 5. The frame-shift mutation creates a stop codon at amino acid position 248 in exon 6. The frequency of the intronic SNP in 14,179 American and European cats representing 38 breeds, 76 western random bred cats and 111 cats of unknown breed is 6.31% and 9.35% when restricted to the 15 groups carrying the concordant SNP.ConclusionsPK testing is recommended for Bengals, Egyptian Maus, La Perms, Maine Coon cats, Norwegian Forest cats, Savannahs, Siberians, and Singapuras, in addition to Abyssinians and Somalis as well an any new breeds using the afore mentioned breeds in out crossing or development programs.

Highlights

  • Erythrocyte pyruvate kinase deficiency (PK deficiency) is an inherited hemolytic anemia that has been documented in the Abyssinian and Somali breeds as well as random bred domestic shorthair cats

  • A partial PK transcript was obtained from red blood cell (RBC), but because it lacked the 5’ portion it could not be identified as an R-type or L-type transcript

  • In silico translation of this product results in a frame shift and erroneous translation of the first 20 amino acids of exon 6, followed by a premature stop codon at position 248 (Figure 1). This truncation results in a loss of the terminal 57% of the mature PKLR type-R protein

Read more

Summary

Introduction

Erythrocyte pyruvate kinase deficiency (PK deficiency) is an inherited hemolytic anemia that has been documented in the Abyssinian and Somali breeds as well as random bred domestic shorthair cats. The disease results from mutations in PKLR, the gene encoding the regulatory glycolytic enzyme pyruvate kinase (PK). Multiple isozymes are produced by tissue-specific differential processing of PKLR mRNA. The mature erythrocytes lack DNA and are unable to produce RNA, rendering them incapable of division and repair and limiting the functional lifespan of the circulating red blood cell (RBC). The final ATP yielding step of the Embden-Meyerof glycolytic pathway is the conversion of phosphoenolpyruvate to pyruvate via the regulatory enzyme pyruvate kinase. Two structural genes encode pyruvate kinase (PK); pyruvate kinase, liver and RBC (PKLR) and pyruvate kinase, muscle (PKM2) [3]. Tissue- and development-specific expression, as well as cellular metabolic needs, determine

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call