Abstract

PurposeIschemic stroke is the second leading cause of death and the third leading cause of disability worldwide. Salvianolic acid B (SAB), a water-soluble phenolic acid derived from the traditional Chinese medicine Salvia miltiorrhiza, exerted protective effects on cerebral ischemia-reperfusion injury. However, the efficacy of SAB is seriously hindered by poor blood brain barrier (BBB) permeability and short biological half-life in plasma. Brain targeted biomimetic nanoparticle delivery systems offer much promise in overcoming these limitations.MethodsA brain targeted biomimetic nanomedicine (RR@SABNPs) was developed, which comprised of SAB loaded bovine serum albumin nanoparticles and functionalized red blood cell membrane (RBCM) with Arg-Gly-Asp (RGD). The characterization parameters, including particle size, zeta potential, morphology, Encapsulation Efficiency (EE), Drug Loading (DL), release behavior, stability, and biocompatibility, were investigated. Moreover, the middle cerebral artery occlusion/reperfusion (MCAO/R) mouse model was used to assess the therapeutic efficacy of RR@SABNPs on ischemic stroke. Finally, the reactive oxygen species (ROS) levels and mitochondrial membrane potential (MMP) were detected by DHE and JC‑1 staining in oxygen-glucose deprivation/reperfusion (OGD/R) and H2O2 injured PC12 cells.ResultsRR@SABNPs exhibited spheric morphology with core-shell structures and good stability and biocompatibility. Meanwhile, RR@SABNPs can significantly prolong SAB circulation time by overcoming the reticuloendothelial system (RES) and actively targeting ischemic BBB. Moreover, RR@SABNPs had comprehensive protective effects on MCAO/R model mice, manifested as a reduced infarct volume and improved neurological and sensorimotor functions, and significantly scavenged excess ROS and maintained MMP.ConclusionThe designed brain targeted biomimetic nanomedicine RR@SABNPs can significantly prolong the half-time of SAB, deliver SAB into the ischemic brain and exhibit good therapeutic effects on MCAO/R model mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call