Abstract
Polymeric nanoparticles (NPs) cloaked by red blood cell membrane (RBCm) confer the combined advantage of both long circulation lifetime and controlled drug release. The authors carried out studies to gain a better understanding of the drug loading, drug-release kinetics and cell-based efficacy of RBCm-cloaked NPs. Two strategies for loading doxorubicin into the RBCm-cloaked NPs were compared: physical encapsulation and chemical conjugation. In vitro efficacy was examined using the acute myeloid leukemia cell line, Kasumi-1. It was found that the chemical conjugation strategy resulted in a more sustained drug release profile, and that the RBCm cloak provided a barrier, retarding the outward diffusion of encapsulated drug molecules. It was also demonstrated that RBCm-cloaked NPs exhibit higher toxicity in comparison with free doxorubicin. These results indicate that the RBCm-cloaked NPs hold great promise to become a valuable drug-delivery platform for the treatment of various diseases such as blood cancers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.