Abstract
Aims: We investigate the formation of flux ropes in a flux emergence region and their rise into the outer atmosphere of the Sun. Methods: We perform 3D numerical experiments solving the time-dependent and resistive MHD equations. Results: A sub-photospheric twisted flux tube rises from the solar interior and expands into the corona. A flux rope is formed within the expanding field, due to shearing and reconnection of field lines at low atmospheric heights. If the tube emerges into a non-magnetized atmosphere, the flux rope rises, but remains confined inside the expanding magnetized volume. On the contrary, if the expanding tube is allowed to reconnect with a preexisting coronal field, the flux rope experiences a full eruption with a rise profile which is in qualitative agreement with erupting filaments and Coronal Mass Ejections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.