Abstract

Tracking single and multiple particles is of great importance for many physical investigations in a variety of different areas. It is essential to find and eliminate sources of systematic errors in the particle position determination (PPD) and to determine the limits of its applicability to a given problem. Particularly when measuring the interactions between colloids at close distances, artifacts in the image taking process pose a great problem. By means of a simulation technique, we investigated the accuracy of the PPD using two-dimensional Gaussian and Gaussian-like fitting functions. For the distance between the two colloidal particles this revealed a systematic overestimation of the inter-particle distance of up to 1.9% of the particle diameter for the Gaussian fitting function. This deviation can be explained by the differences between the intensity distribution of the overlap of the simulated particles and the linear superposition of the Gaussian functions. Modifications of the fitting functions can reduce the systematic error significantly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.